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Abstract. The coupling between order-parameter fluctuations near the wall and depinning
fluid interface in the approach to a complete wetting transition is described by a two-field
Hamiltonian H;[l1, [2] which improves upon standard capillary-wave models of wetting. We
construct a nonlinear renormalization group to study fluctuation effecis=#3 and show how

this elegantly rederives the expression for the renormalized wetting parameter found in earlier
(linear) renormalization-group treatments.

At a wetting transition the adsorption of a pha%eantruding between bulk phases and
y changes from a microscopic to macroscopic value [1]. It is common to view this as
an example of interfacial unbinding [2]. For example, in a binary liquid mixture the
two interfaces (denoted|8 and 8|y, respectively) are both fluid and hence rough in
the limit of infinite separation forl < 3 (see figure XH)). For a one component fluid
on the other hand, adsorption at a planar wall is often modelled as the interaction of a
single fluid«|B interface with a rigidg|y surface which has no fluctuations (figureo))(
However, recent work [3-5] on the structure of correlation functions at the complete wetting
transition has shown that the latter interpretation neglects important coupling effects between
order-parameter fluctuations at the wall an@ interface which may be modelled using a
novel two-field HamiltonianHs[l1, [3]. This approach successfully describes qualitative and
guantitative features of correlation function behaviour [6—8] which are inexplicable using
the standard interfacial model. In this paper we study the renormalizatiati,[éf, /5]
using a straightforward generalization of the nonlinear renormalization grg)ps€¢heme
of Lipowsky and Fisher [9,10] (see also the review [2]) and show how this elegantly
rederives the linearG expression [11] for the renormalized wetting (or capillary) parameter
@ determining values of critical amplitudes for complete wetting with short-ranged forces
ind=3.

To begin we briefly recall how the wetting parameter enters the binding potential flow
equation in linear and nonline®G treatments of standard effective Hamiltonian models
[12]. For wetting by a simple fluid at a planar wall this has the form [1, 2]

H[l(y)] = f dy{ 3 Zas (VIY)? + W((y)) (1)

where X,z is the stiffness coefficient of the free liquid—vapour interface that unbinds from
the wall andW (/) is the binding potential. The collective coordindtg) is a measure of
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Figure 1. Two geometries in which an adsorbed ph#satrudes between the bulk phases
andy. In (a) a binary liquid mixture is shown with two fluctuating interfaces—the variahles
and/, denote the local distance of the two fluid—fluid interfaces from some reference plane. In
(b) a layer of phase is adsorbed between the solid substrate and phaser. Herel denotes

the position of thex| interface.

the thickness of the adsorbed layer at vector displacemeivng the wall. For wetting in
a binary liquid mixture one similarly writes

Hill, 1] = / dylL S5, (VD + 150s(VIn? + Wl — 1)) %)

which clearly allows for fluctuations of both interfaces (the positions of which are described
by a pair of collective coordinatds(y) andl>(y)). In fact the binary Hamiltonian (2) can

be decoupled and the relative interaction transformed into the single interface form (1)
by introducing relative(ly; = I, — [3) and ‘centre-of-mass’ coordinates [2]. The effective
stiffness¥ satisfies the relation [13]

1 1 1

- = 4+ 3
Y e Xy )

This expression appears as a limiting casedntreatments of the two-field Hamiltonian
describing complete wetting by a simple fluid [3, 11] which will be discussed below.

Before considering the two-field Hamiltonian model we recapitulate the linear and
nonlinear RG treatments of the single interface model (1). Generally the initial (bare)
binding potentialW @ (/) = W (I) is renormalized according to

w1 = RIWO )] 4)

where R is the appropriate recursion operator. Note that implicit in the Hamiltonian
definitions (1) and (2) is a momentum cut-off (or equivalently a short-distance cut-off
A~1). TheRraG procedure involves dividing the fluctuating fieldy) into long-wavelength

(I~ (y)) and short-wavelengt{i~ (y)) parts, wheré= and/> contain all Fourier components
of [ with wavenumbersk| < A/b and A/b < |k| < A, respectively. Heré > 1 is the
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usual arbitrary spatial rescaling factor. The recursion operator is determined by integrating
out the short-wavelength fluctuations via some approximation and rescaling in order to bring
the momentum cut-off back to its original value.

Within the simplest (linearRG scheme the trace ovér is simplified by expanding the
binding potential about= and working only to first order iw (). In d = 3 this procedure
yields [12]

oo ’ (l_l/)2
RIW :b2/ —W{ {—} 5
[W©D)] o J2rdb) (") exp 2320 %)
where
o kgT
a’(b) = e Inb. (6)

In the infinitesimal rescaling limib = ¢% (5t — 0) the recursion relation (5) leads to the
simple flow equation

dw 32w
— =2W — 7
dr T 12 0
wherew is the dimensionless wetting parameter defined as
kgT
o= 2" . (8)
47 Eaﬁéb

In this analysis, and those described below, distances ihdirection have been measured

in terms of the bulk correlation lengty), of the wetting phase (which henceforth we set
to unity without loss of generality). The value of the wetting parameter determines non-
universal critical amplitudes at complete wetting in three-dimensional systems with short-
ranged forces [12] corresponding to the marginal dimensionality [13].

A nonlinearRG treatment of (1) has been performed by Lipowsky and Fisher [9, 10]
who consider an extension of Wilson’s original scheme [14]. This method necessarily leads
to the vanishing of the critical point decay exponert-however, for wetting transitions
n = 0 identically [10] and thus the resultant recursion relations are believed to be more
reliable for the study of interfacial transitions than for standard bulk critical phenomena. In
d = 3 this nonlinear treatment yields the recursion relation

o0 dl/
RIW ()] = —0(b)b?] / e
(W] v(b) n[ o i)
xll,zlwzz’wzﬂ 9
<oxpl =5 (o5 )~z Ve -0+ was| ] ©
where
_ . kgTA? 1
b(b) = = (1—b2> (10)

anda(b) is given by (6). The value od(b) within this RG scheme is in fact arbitrary but
is chosen such that the lineac result (5) is recovered upon expanding to first order in
W. The corresponding flow equation is once again derived by considering the infinitesimal
rescaling limit, thus
dw kpT A2 drew 92W
— = In [1 }

=2W s s
dr + A +k3TA2 012

which clearly rederives (7) to linear order. Hence (11) reveals how the wetting parameter
o enters the nonlineakG analysis of wetting. Further, a numerical study based upon this

(11)
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analysis [10] reveals that a shift in the origin (i.e. the position of the wall) is a marginal
operator ind = 3. This provides an early indication that ‘non-critical’ wall effects may
play an important role in unbinding transitions.

We next turn our attention to recent studies which show that in order to derive the
correlation function structure at a complete wetting transition in a thermodynamically
consistent manner we must allow for coupling between order-parameter fluctuations near
the wall and depinning fluid interface [3-5]. This coupling is modelled via a two-field
Hamiltonian H[/3, I,]; for the calculation of critical effects described below it is sufficient
to write

Ho[l1, 1] = / dy {3 Zup(VID)? + 5Tap(Vi)® + W (i1, I2)} . (12)

Here the collective coordinatg represents the position of the unbindings interface
while /; models fluctuations of a non-criticalg interface (with associated finite correlation
length &,5) which remains bound to the wall in the limit of complete wetting (see [3, 4]
for a precise definition). Her&,z represents the stiffness of this non-critical walphase
interface. The binding potentid/ (/;, I,) may be separated and written in the form

Wy, 1) =U() + Wyl —11) (13)

whereW,,, is the binding potential appropriate for the unbinding of the upper interface from

the lower one and is rather similar #& (/) contained in the single-field theory. The term

U (l1) models the fluctuations of the lower interface—these are assumed small and hence

U(l;) may be approximated by expanding around its minimum vajughich we set to

zero without loss of generality. Thus we writ&(/;) = ri?/2. The choice of this Gaussian

form has allowed the introduction of a nowet scheme which involves an exact treatment

of the lower surface while treating the relative binding poteniigl, in a purely lineaRrc

fashion [3,11]. This analysis reveals th#, renormalizes in exactly the same manner

as W(l) in the single-field theory but with the wetting parameigei(given by (8)) being

replaced by the renormalized quantity
wg

1 + (Agwﬂ)_z

where ws = kpT/4nT,5€2 and slgﬂz = r/X,p. The renormalization of the wetting
parameter as given by (14) is crucial in understanding recent Ising model simulation studies
of wetting [15, 16] which, as detailed at length in [11], are inexplicable using a standard
effective interfacial Hamiltonian model. We observe thalisplays two limiting behaviours
depending on the value &f,z. First, in the limit,s — O (or r — oo) the fluctuations
of the boundil; surface are completely suppressed and we recover the single-field result
® = w. In the other limit¢,,s — oo the HamiltonianH>[l1, 7] reduces to that pertinent to
a binary liquid mixture as given in (2). As mentioned earlier the wetting transition in this
case is controlled by the effective stiffneSs(see equation (3)) which clearly corresponds
to the&, s = oo resulto® = w + wg which may be read off from (14). As mentioned earlier
the renormalization of the wetting parameter within the two-field theory is related to the
existence of a marginal operator in the standard capillary-wave model, which translates the
origin of the binding potential.

Given that this conclusion is rather surprising we wish to test the robustness of this
RG scheme, and hence of the renormalization, by considering a nonlinee analysis
of (12). In particular, we wish to derive the recursion relation and flow equation for the
full binding potential W (l1, I;) and then confirm the results given above by substituting
for W(l4, Iy) from (13) with U(l;) = rzf/z. The RG procedure commences by dividing

w=w+

(14)
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both fluctuating fieldd; and/, into long- and short-wavelength parts as discussed above.
The short-wavelength components are then expanded in terms of a complete set of suitably
chosen eigenfunctions which are assumed localized in both real and momentum space [14].
The intermediate renormalized, unrescaled Hamiltoiféfi;", /5] is defined via the partial

trace over short-wavelength fluctuations

exp(—BH'[I], 5]} = exp{—BHolT . 7]}
JJ DIz DI; expl—p(Holl; . 131 + Hylli +17.15 +151)
[ DIz Dl expi—pHoll; . 151}

(15)
whereg = 1/kzT and

Holly, Is] = / Ay {1504(VI)? + 15,45(V1)?)
(16)
Hwll, 2] :/dy W (1, 12)

so thatHy[l1, 5] = Holl1, 2] + Hwll1, I2].

The trace in (15) can be performed by making the same bold approximations as
Wilson in his originalRG treatment—these are explained particularly clearly in [17]. In
order to complete th&G transformation we must rescale the coordingteccording to
y — y' = y/b so that the momentum cut-off is restored to its original value. As a result
of this procedure we derive the recursion relation

e ool dl, R TERY
mvail=sornl [ [ o e o a) ~2(ai

- / 7 _ 7 l _ l/ 17
25(b) Wi+, L+05)+ Wi — 13,1 2)]}:| 17)
wherev(b) is given by (10) and

~ kBT ~ ~2 kBT

ay(b) 27 %0 nb as(b) = a“(b) RS nb (18)

are defined in order to correctly recover straightforward linearresults (i.e. when the
full binding potential W/, [,) is treated in a linear fashion). Exactly as with the earlier
analyses we can derive the flow equation Wrby considering the infinitesimal rescaling
limit » = €% (6t — 0). The resulting equation is

dw kpT A? drwg PW  Arw W
— =2W+ ———In|1
dr 7[ kgT A2 912~ kpT A2 313
+16712ww5 PW 2w [ 82w |? (19)
(kT A2\ 812 0i3 31812 '

By construction, (19) correctly rederives the standard limearesult on expanding to first
order inW. In addition we observe that i¥ is just a function of the unbinding coordinate
I, this flow equation reduces exactly to the single-field nonlirr@result (11).

In order to verify the validity of the quasi-line&c scheme proposed in [3] we substitute
Wy, 1) = rlf/2+ W (2 — 11) into (17) and examine howV,; renormalizes. The
renormalization of the Gaussian term fnis well understood and hence this is easily
extracted. The remaining term yields the renormalization of the relative binding potential.
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Transforming to relative coordinates allows one of the integrations to be performed and we
thus derive

il [ dA (g @G\ AY
RIWi2)(AD] = —D(b)b '”[/ wmem{ z(” b(b) )(&aa))

— W (Al + Al') + W (Al — Al 20
213(19)[ @ AL+ Al') + Wiy ( )]” (20)
whereAl =1, — [; and
. . . a?(b)as(b
G2(b) = a2(b) + a3) + 2O (21)
Thus, up to constant factors, the flow equation Wgp, is simply
dW,,, kT A? 4 wg ?Wo
= 2W, Inf1+ - —— . 22
dr Ch teraz YT 1y (Aéup)2| 9AI2 (22)

Hence comparing with (11) we immediately observe thatdhrenormalization is confirmed

by this nonlinearrG analysis. Consequently we conclude that this important fluctuation
effect related to the coupling of surface fluctuations to those in the unbindhinterface

is robust under a full nonlineac analysis.

To conclude we make some closing remarks:

(i) The nonlinearrRG analysis presented above demonstrates that the renormalization
w — @ is an authentic effect. That is, the renormalization is confirmed not just at first
order in W2, but comparison of (22) and (11) reveals that this effect is true to all orders. It
is important to note that although the free parameigré, are chosen to guarantee that the
nonlinear recursion relation (17) recovers the fully linearized two-field recursion formula
(which also treats thel?/2 term in linear fashion) they are not chosen to identically rederive
theRG flow equation forW,,. Thus we believe that the derived nonlinear flow equation (22)
provides an independent confirmation of the so-called wetting parameter renormalization
effect.

(ii) In the above discussion we have not considered the inclusion of position dependence
in the stiffness coefficients as has recently been suggested for the single-field model [18].
Such position dependence it has been shown to be crucial in the two-field model for
understanding next-to-leading order singular behaviour in correlation function structure at
wetting transitions [3, 4]. Unfortunately it is not possible to incorporate position-dependent
stiffnesses into the nonlinea:G approximations in a consistent manner—at least not within
Wilson'’s original scheme. However, even within the linearsuch terms make no leading-
order contribution to critical effects (embodied in therenormalization) and hence we are
confident that it is safe to ignore them within the present analysis.

(iii) Our above study is restricted to a model of complete wetting away from the
critical wetting transition. The two-field theory of critical wetting is somewhat more
complicated still because it simultaneously involves the decoupling of modes in the two
collective coordinates [5]. TheG analysis [19] predicts that for this transition there is
no renormalization of the wetting parameter but does reveal subtle differences from the
capillary-wave (see [12] and references therein) and Fisher-Jin [18] theories related to
scaling violations which would appear to explain long-standing anomalous Ising model
simulation results [20].
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