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Abstract. The coupling between order-parameter fluctuations near the wall and depinning
fluid interface in the approach to a complete wetting transition is described by a two-field
HamiltonianH2[l1, l2] which improves upon standard capillary-wave models of wetting. We
construct a nonlinear renormalization group to study fluctuation effects ind = 3 and show how
this elegantly rederives the expression for the renormalized wetting parameter found in earlier
(linear) renormalization-group treatments.

At a wetting transition the adsorption of a phaseβ intruding between bulk phasesα and
γ changes from a microscopic to macroscopic value [1]. It is common to view this as
an example of interfacial unbinding [2]. For example, in a binary liquid mixture the
two interfaces (denotedα|β and β|γ , respectively) are both fluid and hence rough in
the limit of infinite separation ford 6 3 (see figure 1(a)). For a one component fluid
on the other hand, adsorption at a planar wall is often modelled as the interaction of a
single fluidα|β interface with a rigidβ|γ surface which has no fluctuations (figure 1(b)).
However, recent work [3–5] on the structure of correlation functions at the complete wetting
transition has shown that the latter interpretation neglects important coupling effects between
order-parameter fluctuations at the wall andα|β interface which may be modelled using a
novel two-field HamiltonianH2[l1, l2]. This approach successfully describes qualitative and
quantitative features of correlation function behaviour [6–8] which are inexplicable using
the standard interfacial model. In this paper we study the renormalization ofH2[l1, l2]
using a straightforward generalization of the nonlinear renormalization group (RG) scheme
of Lipowsky and Fisher [9, 10] (see also the review [2]) and show how this elegantly
rederives the linearRG expression [11] for the renormalized wetting (or capillary) parameter
ω̄ determining values of critical amplitudes for complete wetting with short-ranged forces
in d = 3.

To begin we briefly recall how the wetting parameter enters the binding potential flow
equation in linear and nonlinearRG treatments of standard effective Hamiltonian models
[12]. For wetting by a simple fluid at a planar wall this has the form [1, 2]

HI [l(y)] =
∫

dy
{

1
26αβ(∇l(y))2 + W(l(y))

}
(1)

where6αβ is the stiffness coefficient of the free liquid–vapour interface that unbinds from
the wall andW(l) is the binding potential. The collective coordinatel(y) is a measure of
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Figure 1. Two geometries in which an adsorbed phaseβ intrudes between the bulk phasesα

andγ . In (a) a binary liquid mixture is shown with two fluctuating interfaces—the variablesl1
and l2 denote the local distance of the two fluid–fluid interfaces from some reference plane. In
(b) a layer of phaseβ is adsorbed between the solid substrate(γ ) and phaseα. Herel denotes
the position of theα|β interface.

the thickness of the adsorbed layer at vector displacementy along the wall. For wetting in
a binary liquid mixture one similarly writes

HI [l1, l2] =
∫

dy{ 1
26βγ (∇l1)

2 + 1
26αβ(∇l2)

2 + W(l2 − l1)} (2)

which clearly allows for fluctuations of both interfaces (the positions of which are described
by a pair of collective coordinatesl1(y) and l2(y)). In fact the binary Hamiltonian (2) can
be decoupled and the relative interaction transformed into the single interface form (1)
by introducing relative(l21 = l2 − l1) and ‘centre-of-mass’ coordinates [2]. The effective
stiffness6̄ satisfies the relation [13]

1

6̄
= 1

6αβ

+ 1

6βγ

. (3)

This expression appears as a limiting case inRG treatments of the two-field Hamiltonian
describing complete wetting by a simple fluid [3, 11] which will be discussed below.

Before considering the two-field Hamiltonian model we recapitulate the linear and
nonlinear RG treatments of the single interface model (1). Generally the initial (bare)
binding potentialW(0)(l) ≡ W(l) is renormalized according to

W(1)(l) = R[W(0)(l)] (4)

where R is the appropriate recursion operator. Note that implicit in the Hamiltonian
definitions (1) and (2) is a momentum cut-off3 (or equivalently a short-distance cut-off
3−1). The RG procedure involves dividing the fluctuating fieldl(y) into long-wavelength
(l<(y)) and short-wavelength(l>(y)) parts, wherel< andl> contain all Fourier components
of l with wavenumbers|k| < 3/b and 3/b < |k| < 3, respectively. Hereb > 1 is the
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usual arbitrary spatial rescaling factor. The recursion operator is determined by integrating
out the short-wavelength fluctuations via some approximation and rescaling in order to bring
the momentum cut-off back to its original value.

Within the simplest (linear)RG scheme the trace overl> is simplified by expanding the
binding potential aboutl< and working only to first order inW(l). In d = 3 this procedure
yields [12]

R[W(l)] = b2
∫ ∞

−∞

dl′√
2πã(b)

W(l′) exp

{
− (l − l′)2

2ã2(b)

}
(5)

where

ã2(b) = kBT

2π6αβ

ln b . (6)

In the infinitesimal rescaling limitb = eδt (δt → 0) the recursion relation (5) leads to the
simple flow equation

dW

dt
= 2W + ω

∂2W

∂l2
(7)

whereω is the dimensionless wetting parameter defined as

ω = kBT

4π6αβξ2
b

. (8)

In this analysis, and those described below, distances in thel direction have been measured
in terms of the bulk correlation lengthξb of the wetting phase (which henceforth we set
to unity without loss of generality). The value of the wetting parameter determines non-
universal critical amplitudes at complete wetting in three-dimensional systems with short-
ranged forces [12] corresponding to the marginal dimensionality [13].

A nonlinear RG treatment of (1) has been performed by Lipowsky and Fisher [9, 10]
who consider an extension of Wilson’s original scheme [14]. This method necessarily leads
to the vanishing of the critical point decay exponentη—however, for wetting transitions
η = 0 identically [10] and thus the resultant recursion relations are believed to be more
reliable for the study of interfacial transitions than for standard bulk critical phenomena. In
d = 3 this nonlinear treatment yields the recursion relation

R[W(l)] = −ν̃(b)b2 ln

[∫ ∞

−∞

dl′√
2πã(b)

× exp

{
−1

2

(
l′

ã(b)

)2

− 1

2ν̃(b)
[W(l − l′) + W(l + l′)]

}]
(9)

where

ν̃(b) = kBT 32

4π

(
1 − 1

b2

)
(10)

and ã(b) is given by (6). The value of̃a(b) within this RG scheme is in fact arbitrary but
is chosen such that the linearRG result (5) is recovered upon expanding to first order in
W . The corresponding flow equation is once again derived by considering the infinitesimal
rescaling limit, thus

dW

dt
= 2W + kBT 32

4π
ln

[
1 + 4πω

kBT 32

∂2W

∂l2

]
(11)

which clearly rederives (7) to linear order. Hence (11) reveals how the wetting parameter
ω enters the nonlinearRG analysis of wetting. Further, a numerical study based upon this
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analysis [10] reveals that a shift in the origin (i.e. the position of the wall) is a marginal
operator ind = 3. This provides an early indication that ‘non-critical’ wall effects may
play an important role in unbinding transitions.

We next turn our attention to recent studies which show that in order to derive the
correlation function structure at a complete wetting transition in a thermodynamically
consistent manner we must allow for coupling between order-parameter fluctuations near
the wall and depinning fluid interface [3–5]. This coupling is modelled via a two-field
HamiltonianH2[l1, l2]; for the calculation of critical effects described below it is sufficient
to write

H2[l1, l2] =
∫

dy
{

1
26wβ(∇l1)

2 + 1
26αβ(∇l2)

2 + W(l1, l2)
}
. (12)

Here the collective coordinatel2 represents the position of the unbindingα|β interface
while l1 models fluctuations of a non-criticalwβ interface (with associated finite correlation
length ξwβ) which remains bound to the wall in the limit of complete wetting (see [3, 4]
for a precise definition). Here6wβ represents the stiffness of this non-critical wall-β phase
interface. The binding potentialW(l1, l2) may be separated and written in the form

W(l1, l2) = U(l1) + W(2)(l2 − l1) (13)

whereW(2) is the binding potential appropriate for the unbinding of the upper interface from
the lower one and is rather similar toW(l) contained in the single-field theory. The term
U(l1) models the fluctuations of the lower interface—these are assumed small and hence
U(l1) may be approximated by expanding around its minimum valuel0 which we set to
zero without loss of generality. Thus we writeU(l1) = rl2

1/2. The choice of this Gaussian
form has allowed the introduction of a novelRG scheme which involves an exact treatment
of the lower surface while treating the relative binding potentialW(2) in a purely linearRG

fashion [3, 11]. This analysis reveals thatW(2) renormalizes in exactly the same manner
as W(l) in the single-field theory but with the wetting parameterω (given by (8)) being
replaced by the renormalized quantity

ω̄ = ω + ωβ

1 + (3ξwβ)−2
(14)

where ωβ = kBT /4π6wβξ2
b and ξ−2

wβ = r/6wβ . The renormalization of the wetting
parameter as given by (14) is crucial in understanding recent Ising model simulation studies
of wetting [15, 16] which, as detailed at length in [11], are inexplicable using a standard
effective interfacial Hamiltonian model. We observe thatω̄ displays two limiting behaviours
depending on the value ofξwβ . First, in the limit ξwβ → 0 (or r → ∞) the fluctuations
of the boundl1 surface are completely suppressed and we recover the single-field result
ω̄ ≡ ω. In the other limitξwβ → ∞ the HamiltonianH2[l1, l2] reduces to that pertinent to
a binary liquid mixture as given in (2). As mentioned earlier the wetting transition in this
case is controlled by the effective stiffness6̄ (see equation (3)) which clearly corresponds
to theξwβ = ∞ resultω̄ = ω + ωβ which may be read off from (14). As mentioned earlier
the renormalization of the wetting parameter within the two-field theory is related to the
existence of a marginal operator in the standard capillary-wave model, which translates the
origin of the binding potential.

Given that this conclusion is rather surprising we wish to test the robustness of this
RG scheme, and hence of theω renormalization, by considering a nonlinearRG analysis
of (12). In particular, we wish to derive the recursion relation and flow equation for the
full binding potentialW(l1, l2) and then confirm the results given above by substituting
for W(l1, l2) from (13) with U(l1) = rl2

1/2. The RG procedure commences by dividing
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both fluctuating fieldsl1 and l2 into long- and short-wavelength parts as discussed above.
The short-wavelength components are then expanded in terms of a complete set of suitably
chosen eigenfunctions which are assumed localized in both real and momentum space [14].
The intermediate renormalized, unrescaled HamiltonianH ′[l<1 , l<2 ] is defined via the partial
trace over short-wavelength fluctuations

exp{−βH ′[l<1 , l<2 ]} = exp{−βH0[l<1 , l<2 ]}

×
∫ ∫ Dl>1 Dl>2 exp{−β(H0[l>1 , l>2 ] + HW [l<1 + l>1 , l<2 + l>2 ])}∫ ∫ Dl>1 Dl>2 exp{−βH0[l>1 , l>2 ]} (15)

whereβ = 1/kBT and

H0[l1, l2] =
∫

dy
{

1
26wβ(∇l1)

2 + 1
26αβ(∇l2)

2
}

HW [l1, l2] =
∫

dy W(l1, l2)

(16)

so thatH2[l1, l2] = H0[l1, l2] + HW [l1, l2].
The trace in (15) can be performed by making the same bold approximations as

Wilson in his originalRG treatment—these are explained particularly clearly in [17]. In
order to complete theRG transformation we must rescale the coordinatey according to
y → y′ = y/b so that the momentum cut-off is restored to its original value. As a result
of this procedure we derive the recursion relation

R[W(l1, l2)] = −ν̃(b)b2 ln

[∫ ∞

−∞

∫ ∞

−∞

dl′1 dl′2
2πã1(b)ã2(b)

exp

{
−1

2

(
l′1

ã1(b)

)2

− 1

2

(
l′2

ã2(b)

)2

− 1

2ν̃(b)
[W(l1 + l′1, l2 + l′2) + W(l1 − l′1, l2 − l′2)]

}]
(17)

whereν̃(b) is given by (10) and

ã2
1(b) = kBT

2π6wβ

ln b ã2
2(b) = ã2(b) = kBT

2π6αβ

ln b (18)

are defined in order to correctly recover straightforward linearRG results (i.e. when the
full binding potentialW(l1, l2) is treated in a linear fashion). Exactly as with the earlier
analyses we can derive the flow equation forW by considering the infinitesimal rescaling
limit b = eδt (δt → 0). The resulting equation is

dW

dt
= 2W + kBT 32

4π
ln

[
1 + 4πωβ

kBT 32

∂2W

∂l2
1

+ 4πω

kBT 32

∂2W

∂l2
2

+ 16π2ωωβ

(kBT 32)2

(
∂2W

∂l2
1

∂2W

∂l2
2

−
{

∂2W

∂l1∂l2

}2)]
. (19)

By construction, (19) correctly rederives the standard linearRG result on expanding to first
order inW . In addition we observe that ifW is just a function of the unbinding coordinate
l2 this flow equation reduces exactly to the single-field nonlinearRG result (11).

In order to verify the validity of the quasi-linearRG scheme proposed in [3] we substitute
W(l1, l1) = rl2

1/2 + W(2)(l2 − l1) into (17) and examine howW(2) renormalizes. The
renormalization of the Gaussian term inl1 is well understood and hence this is easily
extracted. The remaining term yields the renormalization of the relative binding potential.
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Transforming to relative coordinates allows one of the integrations to be performed and we
thus derive

R[W(2)(1l)] = −ν̃(b)b2 ln

[∫ ∞

−∞

d1l′√
2πα̃(b)

exp

{
−1

2

(
1 + ã2

1(b)r

ν̃(b)

)(
1l′

α̃(b)

)2

− 1

2ν̃(b)
[W(2)(1l + 1l′) + W(2)(1l − 1l′)]

}]
(20)

where1l = l2 − l1 and

α̃2(b) = ã2
1(b) + ã2

2(b) + ã2
1(b)ã2

2(b)r

ν̃
. (21)

Thus, up to constant factors, the flow equation forW(2) is simply

dW(2)

dt
= 2W(2) + kBT 32

4π
ln

[
1 + 4π

kBT 32

{
ω + ωβ

1 + (3ξwβ)−2

}
∂2W(2)

∂1l2

]
. (22)

Hence comparing with (11) we immediately observe that theω renormalization is confirmed
by this nonlinearRG analysis. Consequently we conclude that this important fluctuation
effect related to the coupling of surface fluctuations to those in the unbindingα|β interface
is robust under a full nonlinearRG analysis.

To conclude we make some closing remarks:
(i) The nonlinearRG analysis presented above demonstrates that the renormalization

ω → ω̄ is an authentic effect. That is, the renormalization is confirmed not just at first
order inW(2) but comparison of (22) and (11) reveals that this effect is true to all orders. It
is important to note that although the free parametersã1, ã2 are chosen to guarantee that the
nonlinear recursion relation (17) recovers the fully linearized two-field recursion formula
(which also treats therl2

1/2 term in linear fashion) they are not chosen to identically rederive
theRG flow equation forW(2). Thus we believe that the derived nonlinear flow equation (22)
provides an independent confirmation of the so-called wetting parameter renormalization
effect.

(ii) In the above discussion we have not considered the inclusion of position dependence
in the stiffness coefficients as has recently been suggested for the single-field model [18].
Such position dependence it has been shown to be crucial in the two-field model for
understanding next-to-leading order singular behaviour in correlation function structure at
wetting transitions [3, 4]. Unfortunately it is not possible to incorporate position-dependent
stiffnesses into the nonlinearRG approximations in a consistent manner—at least not within
Wilson’s original scheme. However, even within the linearRG such terms make no leading-
order contribution to critical effects (embodied in theω renormalization) and hence we are
confident that it is safe to ignore them within the present analysis.

(iii) Our above study is restricted to a model of complete wetting away from the
critical wetting transition. The two-field theory of critical wetting is somewhat more
complicated still because it simultaneously involves the decoupling of modes in the two
collective coordinates [5]. TheRG analysis [19] predicts that for this transition there is
no renormalization of the wetting parameter but does reveal subtle differences from the
capillary-wave (see [12] and references therein) and Fisher–Jin [18] theories related to
scaling violations which would appear to explain long-standing anomalous Ising model
simulation results [20].
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